Búsqueda
La búsqueda consiste acceder a la raíz del árbol, si el elemento a localizar coincide con éste la búsqueda ha concluido con éxito, si el elemento es menor se busca en el subárbol izquierdo y si es mayor en el derecho. Si se alcanza un nodo hoja y el elemento no ha sido encontrado se supone que no existe en el árbol. Cabe destacar que la búsqueda en este tipo de árboles es muy eficiente, representa una función logarítmica. El máximo número de comparaciones que necesitaríamos para saber si un elemento se encuentra en un árbol binario de búsqueda estaría entre [log2(N+1)] y N, siendo N el número de nodos. La búsqueda de un elemento en un ABB (Árbol Binario de Búsqueda) se puede realizar de dos formas, iterativa o recursiva.
Tipos de búsqueda
Inserción
La inserción es similar a la búsqueda y se puede dar una solución tanto iterativa como recursiva. Si tenemos inicialmente como parámetro un árbol vacío se crea un nuevo nodo como único contenido el elemento a insertar. Si no lo está, se comprueba si el elemento dado es menor que la raíz del árbol inicial con lo que se inserta en el subárbol izquierdo y si es mayor se inserta en el subárbol derecho. De esta forma las inserciones se hacen en las hojas.
Borrado
La operación de borrado no es tan sencilla como las de búsqueda e inserción. Existen varios casos a tener en consideración:
• Borrar un nodo sin hijos o nodo hoja: simplemente se borra y se establece a nulo el apuntador de su padre.
• Borrar un nodo con un subárbol hijo: se borra el nodo y se asigna su subárbol hijo como subárbol de su padre.
• Borrar un nodo con dos subárboles hijo: la solución está en reemplazar el valor del nodo por el de su predecesor o por el de su sucesor en inorden y posteriormente borrar este nodo. Su predecesor en inorden será el nodo más a la derecha de su subárbol izquierdo (mayor nodo del subarbol izquierdo), y su sucesor el nodo más a la izquierda de su subárbol derecho (menor nodo del subarbol derecho). En la siguiente figura se muestra cómo existe la posibilidad de realizar cualquiera de ambos reemplazos:
Recorridos
Se puede hacer un recorrido de un árbol en profundidad o en anchura.
Los recorridos en anchura son por niveles, se realiza horizontalmente desde la raíz a todos los hijos antes de pasar a la descendencia de alguno de los hijos.
El recorrido en profundidad lleva al camino desde la raíz hacia el descendiente más lejano del primer hijo y luego continúa con el siguiente hijo. Como recorridos en profundidad tenemos inorden, pre orden y postor den.
Una propiedad de los ABB es que al hacer un recorrido en profundidad inorden obtenemos los elementos ordenados de forma ascendente.